Systems Biology Modeling Reveals a Possible Mechanism of the Tumor Cell Death upon Oncogene Inactivation in EGFR Addicted Cancers

نویسندگان

  • Jian-Ping Zhou
  • Xin Chen
  • Shan Feng
  • Shi-Dong Luo
  • You-Li Pan
  • Lei Zhong
  • Pan Ji
  • Ze-Rong Wang
  • Shuang Ma
  • Lin-Li Li
  • Yu-Quan Wei
  • Sheng-Yong Yang
چکیده

Despite many evidences supporting the concept of "oncogene addiction" and many hypotheses rationalizing it, there is still a lack of detailed understanding to the precise molecular mechanism underlying oncogene addiction. In this account, we developed a mathematic model of epidermal growth factor receptor (EGFR) associated signaling network, which involves EGFR-driving proliferation/pro-survival signaling pathways Ras/extracellular-signal-regulated kinase (ERK) and phosphoinositol-3 kinase (PI3K)/AKT, and pro-apoptotic signaling pathway apoptosis signal-regulating kinase 1 (ASK1)/p38. In the setting of sustained EGFR activation, the simulation results show a persistent high level of proliferation/pro-survival effectors phospho-ERK and phospho-AKT, and a basal level of pro-apoptotic effector phospho-p38. The potential of p38 activation (apoptotic potential) due to the elevated level of reactive oxygen species (ROS) is largely suppressed by the negative crosstalk between PI3K/AKT and ASK1/p38 pathways. Upon acute EGFR inactivation, the survival signals decay rapidly, followed by a fast increase of the apoptotic signal due to the release of apoptotic potential. Overall, our systems biology modeling together with experimental validations reveals that inhibition of survival signals and concomitant release of apoptotic potential jointly contribute to the tumor cell death following the inhibition of addicted oncogene in EGFR addicted cancers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression and Evaluation of HuscFv Antibody -PE40 Immunotoxin for Target Therapy of EGFR-Overexpressing Cancers

Background: Epidermal growth factor receptor (EGFR) plays an important role in the progression and tumorigenesis of the various cancers. In this regards, anti-EGFR antibodies are valuable approved therapeutics for the EGFR over-expressing cancers. However, the occurrence of mutations in the EGFR and/or KRAS genes; a common phenomenon which is seen in many cancers, lead to the r...

متن کامل

Heat‐shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF

The small heat-shock protein of 27 kDa (HSP27) is highly expressed in many cancers and is associated with aggressive tumour behaviour, metastasis, poor prognosis and resistance to chemotherapy. We aimed at assessing the role of HSP27 in modulating responses to target therapies. We selected several oncogene-addicted cancer cell lines, which undergo either cell cycle blockade or cell death in res...

متن کامل

Oncogene withdrawal engages the immune system to induce sustained cancer regression

The targeted inactivation of a single oncogene can induce dramatic tumor regression, suggesting that cancers are "oncogene addicted." Tumor regression following oncogene inactivation has been thought to be a consequence of restoration of normal physiological programs that induce proliferative arrest, apoptosis, differentiation, and cellular senescence. However, recent observations illustrate th...

متن کامل

Why Do Cancer Cells Become “Addicted” to Oncogenic Epidermal Growth Factor Receptor?

Targeting the Epidermal Growth Factor Receptor Kinase in Cancer During the last five years, kinase inhibitors have emerged as a promising new class of cancer therapeutics [1]. These drugs target enzymes that are often ubiquitously expressed within the human body, control a wide range of cellular responses, and are tightly regulated under physiological conditions [2]. Cancer cells can escape the...

متن کامل

Prevalence of K-RAS mutations and CA125 tumor marker in patients with ovarian carcinoma

Background: Ovarian carcinoma is one of the leading causes of cancer-related death among females. K-ras codon 12 mutations are commonly occurring mutations in different types of cancers and leads to resistance against anti-EGFR therapeutics. Hence, determination of mutations in k-ras gene is crucial for predicting response to anti-EGFR therapies. This study aimed to evaluate the prevalence of k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011